На правах рукописи

Cufut

Садыков Хизир Амирович

ФАЗООБРАЗОВАНИЕ И СВЯЗИ СОСТАВ – СТРУКТУРА – СВОЙСТВА В СЕГНЕТОАКТИВНЫХ МАТЕРИАЛАХ НА ОСНОВЕ НИОБАТОВ НАТРИЯ И ФЕРРИТА ВИСМУТА

01.04.07 - физика конденсированного состояния

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Ростов-на-Дону - 2014

Работа выполнена в отделе активных материалов Научно-исследовательского института физики федерального государственного автономного образовательного учреждения высшего профессионального образования «Южный федеральный университет», г. Ростов-на-Дону.

Научный руководитель:	доктор физико-математических наук, профессор Резниченко Лариса Андреевна						
Официальные оппоненты:	Лунин Леонид Сергеевич, заслуженный деятель науки РФ, доктор физико-математических наук, профессор, ФГБОУ ВПО «Южно-Российский государ- ственный политехнический университет (НПИ) им. М.И. Платова», заведующий кафедрой «Нанотехнология в электронике»						
	Гаджиев Гаджи Гамзаевич, кандидат физико-математических наук, Дагестанский научный центр РАН, ведущий научный сотрудник						
Ведущая организация:	ФГБОУ ВПО «Тверской государственный университет» (г. Тверь)						

Защита диссертации состоится 17 декабря 2014 года в 15⁰⁰ часов на заседании диссертационного совета Д 212.076.02 при ФГБОУ ВПО «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» по адресу: 360004, г. Нальчик, ул. Чернышевского, 173.

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВПО «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» и на сайте <u>http://diser.kbsu.ru</u>.

Автореферат разослан «___» ____ 2014 года

Ученый секретарь диссертационного совета

a

А. А. Ахкубеков

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

Наиболее практически востребованным направлением в физике конденсированного состояния является физика функциональных материалов [1]. При этом в настоящее время наибольшее внимание исследователей и разработчиков радиоэлектронной аппаратуры привлекают материалы, не содержащие токсичные элементы, что продиктовано введением новой законодательной базы (DIRECTIVE 2002/95/ЕС OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electronic equipment // Official Journal of the European Union. - 2003. -№ 37. - Р. 19-23.), запрещающей традиционное применение свинца в пьезотехнических отраслях. Именно поэтому возобновился и усилился интерес к композициям на основе ниобатов щелочных металлов (НЩМ) [2], феррита висмута (BiFeO₃) – перспективным базовым средам для создания устройств микро-, наноэлектроники, спинтроники. Однако, не учет особенностей их физико-химического состояния и его зависимости от условий фазообразования объектов привел во многих случаях к недостоверности и невоспроизводимости получаемых экспериментальных результатов, а также невозможности их использования на практике. В связи с этим представляется актуальным установление закономерностей фазообразования и формирования корреляционных связей между кристаллографическими характеристиками структуры, зеренным строением и макрооткликами твердых растворов (ТР) на основе НЩМ, ВіFeO₃, что и стало целью настоящей работы.

Для достижения поставленной цели необходимо решить следующие задачи:

1. Осуществить анализ библиографических сведений о НЩМ (с акцентом на ТР ниобатов натрия – лития), композициях на основе феррита висмута.

2. Изучить влияние условий фазообразования на процессы формирования кристаллической структуры, микроструктуры, диэлектрических, пьезоэлектрических и упругих свойств выбранных объектов и на этой основе оптимизировать технологические регламенты их получения с надежными, воспроизводимыми характеристиками.

3. Определить пути направленного изменения физических свойств рассматриваемых ТР вариацией их условий фазообразования, являющихся как деталями технологий, так и проводимых экспериментов.

4. Установить возможности применения к исследуемым веществам некоторых общих представлений о корреляционной связи состав – структура – свойства и природе аномальных явлений в областях концентрационных и полиморфных превращений и выявить специфику макрооткликов в исследуемых системах, связанную с особенностями их физико-химического состояния.

5. Выбрать на базе полученных экспериментальных данных перспективные основы функциональных материалов, пригодных для использования в электронике, осуществить комплекс мер по охране созданной интеллектуальной собственности.

Объекты исследования:

– ТР бинарной системы ниобатов натрия – меди $(1-x)NaNbO_3-x/2CuNb_2O_6$, $0.00 \le x \le 0.1625$, исследовательский концентрационный шаг $\Delta x = 0.0125$,

– ТР на основе бинарной системы (Na, Li)NbO₃, модифицированные $(1\div3)$ масс.% CuO, SnO₂, MnO₂, (MnO₂+ CuO), $\Delta x = 1$ масс %; (0.5÷3) масс.% NiO и (Bi₂O₃+Fe₂O₃), $\Delta x = 0.5$ масс %;

– феррит висмута BiFeO₃, модифицированный 0.5 масс.% CoO, NiO, CuO, ZnO, Cr₂O₃, MnO₂, Li₂CO₃, B₂O₃, TiO₂, Nb₂O₅.

Твердотельные состояния объектов: дисперсно-кристаллические вещества (шихты, синтезированные порошки, измельченные поликристаллы), керамики.

Научная новизна

В ходе выполнения работы впервые:

- установлены закономерности фазообразования в бинарной системе

(1-х) NaNbO₃- х/2CuNb₂O₆ (0.00 \leq х \leq 0.1625, Δ х = 0.0125) в процессе приготовления поликристаллических образцов; выявлены особенности их рекристаллизационного спекания, формирования микроструктуры; показана зависимость свойств от квалификации Nb₂O₅; построена фазовая диаграмма системы, содержащая сложную морфотропную область; обнаружены эффекты низкочастотной дисперсии диэлектрической проницаемости, связанные с влиянием электропроводности;

– выявлены корреляционные связи состав – структура –свойства; разработана и экспериментально реализована схема модифицирования TP, включающих (Na,Li)NbO₃, монооксидами Mn, Cu, Ni и сложными добавками MnO₂+CuO, Bi₂O₃+Fe₂O₃; рентгенографически установлены последовательности возникающих фазовых состояний, качественно-количественный состав которых зависит от характеристик вводимых модификаторов; комплексом методов установлена локализация ионов-модификаторов в структуре базовых TP;

– показаны пути повышения термической устойчивости BiFeO₃ путем легирования d-элементами (Mn, Co, Ni), а также оксидами высокозарядных ионов (Nb⁺⁵,Ti⁺⁴); установлено влияние специфики вводимых ионов на характер связности и морфологию зерен керамик на основе феррита висмута; выявлены механизмы увеличения сегнетожесткости BiFeO₃ при модифицировании высокозарядными и низкозарядными ионами; определена роль дефектной подсистемы в формировании диэлектрических свойств модифицированного BiFeO₃ в окрестности 100 °C;

Практическая значимость основных результатов

При выполнении исследований автором (совместно с сотрудниками отдела активных материалов НИИ физики ЮФУ) разработаны и созданы: – пьезоэлектрический керамический материал, характеризующийся средним значением относительной диэлектрической проницаемости ($\epsilon_{33}^{-7}/\epsilon_0 \sim 121$), достаточно высокими пьезомодулем ($d_{33} \sim 45$ пКл/Н), пьезочувствительностью ($g_{33} \sim 42$ мВ·м/Н), коэффициентом электромеханической связи ($K_p \sim 0.19$), высокой механической добротностью ($Q_m \sim 516$), и скоростью звука ($V_1^{-E} \sim 5.8$ Км/с), который может быть использован в среднечастотных радиоэлектронных устройствах, работающих в режиме приема (Патент на изобретение № 2498959 от 20.11.2013. по заявке № 2011145119/03(067608.) от 09.11.2011 (приоритет). МПК С04В 35/495 (2006.01). Опубликован 20.11.2013. Бюл. № 32.;

 методики, аттестованные Государственной службой стандартных справочных данных (ГСССД) Рос. н-т. центра информации по стандартизации, метрологии и оценке соответствия (ФГУП «Стандартинформ», г. Москва); в том числе,

• экспериментального определения реверсивной нелинейности относительной диэлектрической проницаемости различных многофункциональных материалов в широком интервале температур (300 ÷ 450) К, частот переменного электрического поля (10² ÷ 10⁵) Гц и напряженностей постоянного смещающего электрического поля (0 ÷ 30) кВ/см // Аттестат № 199 от 16.05.2012 г. № ГСССД МЭ 199 – 2012 ФГУП «Стандартинформ»;

• экспериментального определения магнитодиэлектрического эффекта различных многофункциональных мультиферроидных материалов в широком интервале температур (300 ÷ 750) К и частот (1 ÷ 2·10⁶) Гц // Аттестат № 200 от 16.05.2012. № ГСССД МЭ 200 – 2012 ФГУП «Стандартинформ».

Положения, выносимые на защиту

1. В формировании фазовых состояний, диэлектрических, пьезоэлектрических и упругих свойств TP системы (1-х) NaNbO₃ – x/2CuNb₂O₆ (0.00 \leq x \leq 0.1625, Δ x = 0.0125) критическую роль играет термодинамическая предыстория, с которой связано образование сложных пространственно-неоднородных сред.

2. Рост механической добротности и пьезочувствительности на фоне снижения диэлектрических проницаемостей, потерь и электропроводности в модифицированных оксидами Cu, Ni, Mn керамиках на основе ниобатов натрия-лития обусловлен образованием анионнодефицитных и анионноизбыточных TP повышенной сегнетожесткости.

3. Аномалии диэлектрических спектров керамик на основе BiFeO₃ вблизи 100 °C являются следствием изменений его реальной структуры при модифицировании Co, Ni, Zn; в случае с Ti, его практически полное вхождение в базовую решетку обеспечивает снижение дефектности и повышение диэлектрической стабильности объектов.

Степень достоверности результатов

Надежность и достоверность полученных в работе результатов обусловлены одновременным использованием комплекса взаимодополняющих экспериментальных методов и теоретических расчетов; согласием результатов, полученных различными методами; применением апробированных методик экспериментальных исследований, аттестованных ГСССД, и метрологически аттестованной прецизионной технологической и измерительной аппаратуры, в том числе, выпуска 2004-2012 гг.; проведением измерений большого числа образцов каждого состава, показавших хорошую воспроизводимость свойств.

Апробация результатов работы

Основные результаты диссертации представлены на симпозиумах, конференциях, совещаниях и семинарах различного уровня: IV Международный конгресс (V Международная научно-техническая конференция) «Экология и безопасность жизнедеятельности промышленно-транспортных комплексов» («ELPIT – 2011, 2013»), г. Тольятти - г. Самара, 2011, 2013; II Международный молодежный симпозиум «Физика бессвинцовых пьезоактивных материалов. (Анализ современного состояния и перспективы развития)» («LFPM – 2013»), г. Ростов-на-Дону – г. Туапсе, 2013.

Работа выполнена при финансовой поддержке МОН РФ (базовая и проектная части гос. задания темы № 213.01-11/2014-21, 213.01-2014/012-ВГ, и 3.1246.2014/К) и ФЦП (ГК № 14.575.21.0007).

Публикации

Основные результаты диссертации отражены в 9-ти статьях, из которых 6 опубликованы в центральных отечественных журналах, входящих в Перечень ведущих рецензируемых научных журналов и изданий, рекомендованных ВАК РФ, и одном патенте РФ.

Личный вклад автора в разработку проблемы

Автором **лично** определены задачи, решаемые в работе; собраны и обобщены в виде аналитического обзора библиографические сведения по теме диссертации; выбраны оптимальные технологические регламенты, разработаны и созданы методики; проведены измерения диэлектрических, пьезоэлектрических, упругих, магнитодиэлектрических и других свойств всех объектов в широком интервале внешних воздействий, произведена обработка экспериментальных данных; произведено компьютерное оформление всего графического и текстового материала диссертации.

Совместно с научным руководителем работы д.ф.-м.н., проф. Резниченко Л.А. осуществлен выбор направлений исследований, сформулированы тема и цель работы, проведено обсуждение и обобщение полученных в диссертации данных, осуществлена интерпретация некоторых полученных экспериментальных результатов, а также сформулированы выводы по работе и основные научные положения, выносимые на защиту.

Совместно с сотрудниками НИИ физики, физического факультета ЮФУ и других научных Центров осуществлены следующие работы: изготовлен основной массив керамических образцов исследуемых материалов; проведены рентгеноструктурные исследования; выполнены исследования микроструктуры и элементного состава керамик.

Объем и структура диссертации. Основное содержание работы отражено во введении, 5 главах, основных результатах и выводах, заключении и приложении, изложенных на 181 странице. В диссертации 87 рисунков, 48 таблиц, список цитируемой литературы, состоящий из 324 наименования.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность выбранной темы работы, сформулированы ее цель и задачи, определены объекты исследования, научная новизна, представлены теоретическая и практическая значимость проведенных исследований, основные научные положения, выносимые на защиту, описаны апробация результатов работы, личный вклад автора, раскрыта структура работы, дана краткая характеристика каждой главы. В первой главе дан литературный обзор основных библиографических сведений об объектах, исследуемых в настоящей работе. Описаны основные результаты, полученные в ходе исследования керамик на основе НЩМ, и феррита висмута.

Вторая глава – методическая, в ней описываются методы получения и исследования образцов.

Все образцы получены методом твердофазных реакций с последующим спеканием по обычной керамической технологии.

Микроструктуры образцов анализировали на растровом электронном микроскопе-микроанализаторе (РЭМ) Камебакс-микро, электронном микроскопе «Hitachi TM-1000», оптическом микроскопе Leica DMI5000М.Рентгенографические исследования при комнатной температуре проводили с использованием дифрактометра ДРОН-3, а при $T = (300 \div 1000)$ К – дифрактометра АДП-1 (фокусировка по Брэггу-Брентано) с использованием отфильтрованного СоК_α-излучения. Расчёт параметров (линейных – *a*, *c*, углового – α , объёма – V элементарной ячейки) производили по стандартным методикам.

Определение измеренной плотности образцов $\rho_{\rm изм}$ осуществляли методом гидростатического взвешивания в октане, расчет рентгеновской плотности $\rho_{\rm рентг}$ производили по формуле: $\rho_{\rm рентг} = 1.66 \cdot \frac{M}{V}$, где M - вес формульной единицы в граммах, V – объем перовскитной ячейки в Å³, а относительной $\rho_{\rm отн}$ – по формуле $\rho_{\rm отн} = \frac{\rho_{\rm изм}}{\rho_{\rm рентг}} \times 100\%$.

Рентгеноэлектронные (РЭ) спектры получали в лаборатории поверхности и гетероструктур НИИ физики ЮФУ (д-р физ.-мат. наук, проф. Козаков) с помощью модуля РЭ спектроскопии с монохроматизацией рентгеновского излучения AlK_α – линии системы анализа поверхности Escalab 250.

Электрофизические параметры (относительные диэлектрические проницаемости неполяризованных $\varepsilon/\varepsilon_0$ и поляризованных $\varepsilon_{33}^{\rm T}/\varepsilon_0$ образцов; пьезомодули d_{ij} , пьезочувствительности g_{ij} , коэффициент электромеханической связи планарной моды колебаний $K_{\rm p}$, механическую добротность $Q_{\rm M}$) рассчитывали в соответствии с методикой ГСССД МЭ 183 – 2011 на основе измерений с помощью анализатора импеданса Wayne Kerr 6500B и YE2030A d_{33} METER. Комплексную диэлектрическую проницаемостьк ε^* при $T = (300 \div 1000)$ К и $f = (25 \div 10^6)$ Гц определяли с помощью LCR–метра Agilent E4980A, а при $f = (10^{-1} \div 10^5)$ Гц-LCR–метра HIOKI 3522-50.

В третьей главе приведены результаты исследования ТР бинарной системы (1-х)NaNbO₃ – х/2CuNb₂O₆.

На рисунке 1 показаны изменения относительных интенсивностей рентгеновских максимумов, соответствующих примесным фазам, в зависимости от температуры синтеза ТР. Видно, что содержание примесей изменяется нелинейно и зависимости носят характер затухающих колебательных процессов, что свидетельствует о многостадийности конкурентного встраивания меди в решетку перовскита. Критическое влияние на процессы фазообразования, формирование микроструктуры и макроскопическую дефектность керамических спеков оказывает как физико-химическое состояние оксида ниобия (рисунок 2), так и возникновение Си-содержащих жидких фаз, (плавней), (по типу контактного плавления [4]) при синтезе и спекании керамик.

Рисунок 1 – Зависимости относительных интенсивностей рентгеновских максимумов I/I₁ от T_{cunt} TP системы (1-х = 0.025; 2-х = 0.05; 3-х = 0.075; 4-х = 0.10)

Рисунок 2 – Отшлифованные поверхности спечённых керамик в зависимости от состава и квалификации, используемого сырья (слева), срезы керамического образца квалификации «Осч» на различной глубине (справа)

На рисунке 2 показаны фотографии отшлифованных поверхностей поликристаллических спёков TP различного состава, изготовленных при оптимальной температуре синтеза, подобранной в интервале $T_{cn} = (1050 \div 1100)$ °C. Хорошо заметно, что полученные керамики резко различаются по характеру образующихся макродефектов (трещин и сколов): в TP с низким содержанием меди наблюдается скалывание краёв поликристаллических спёков, что может быть вызвано накоплением механических напряжений в результате многочисленных фазовых переходов при остывании спечённых заготовок, характерных для ниобата натрия. Рентгенофазовый анализ показал, что использование оксида ниобия квалификаций «Осч» и «Нбо-Пт» для получения керамик TP состава (1-*x*) NaNbO₃ – x/2 CuNb₂O₆ приводит к различным результатам:

– при использовании Nb₂O₅– «Осч» в интервале $0 < x \le 0.075$ образуется беспримесный твердый раствор, увеличение *x* приводит к появлению посторонних фаз; – при использовании Nb₂O₅ – «Нбо-Пт» получить беспримесный TP не удалось. Кроме перовскитной фазы TP содержат следующие соединения: CuNb₂O₆ с моноклинной (M) ячейкой, CuNb₂O₆ с ромбической (P) ячейкой, Na₂Nb₈O₂₁ и Na₂ ₆CuNb₁₁O₃₀;

– при использовании Nb₂O₅ – «Осч» в системе TP имеет место фазовый переход из P фазы (перовскитная ячейка моноклинная с удвоенным параметром $b - M_2$) в тетрагональную (T) фазу через сложную MO. Состав MO установить невозможно из–за очень близких параметров ячейки входящих в нее фаз, что приводит к наложению рентгеновских линий. Это может быть смесь M- и ромбоэдрической (Pэ) фаз, поэтому фаза в MO названа нами псевдокубической (Пск). Нижняя граница MO расположена в интервале 0.00 < x < 0.0625, верхняя не установлена из-за появления посторонних фаз, в результате чего истинная концентрация компонентов не соответствует заданной стехиометрии. Предположительно, последовательность фаз при фазовом переходе в изученном интервале концентраций такова: P(M₂) → P(M₂)+Pэ→Pэ+T; в TP с участием Nb₂O₅ – «Нбо-Пт» концентрация посторонних фаз с ростом *x* меняется немонотонно, при этом также немонотонно изменяется концентрация компонентов TP. Поэтому последовательность в смене фаз с различной симметрией с ростом *x* не наблюдается;

– на плотность керамики квалификация Nb_2O_5 не влияет, сказывается только величина *x*: чем больше $CuNb_2O_6$ в TP, тем ниже плотность.

Формирование плавней приводит к возникновению бимодальной микроструктуры с образованием гигантских зерен и их конгломератов, в межкристаллитных прослойках которых формируется мелкозернистая рыхлая структура часто с радиально-кольцевой сеткой границ (рисунок 3).

50 мкм

Рисунок 3 – Фрагмент микроструктуры керамики ТР, приготовленной из Nb₂O₅ квалификации «Осч». Штрих-пунктирными линиями выделена область образования мелкозернистой рыхлой структуры

На рисунке 4 представлены зависимости $\varepsilon/\varepsilon_0$ и tgδ от температуры при разных частотах *f* переменного электрического поля TP с различным содержанием CuNb₂O_{6.} Характерная для сегнето(антисегнето)электриков зависимость $\varepsilon/\varepsilon_0$ от температуры с ярко выраженным максимумом при температуре Кюри T_{κ} имеет ряд особенностей, связанных с эволюцией диэлектрических спектров при обогащении системы ниобатом меди. Так, практически λ -образный пик ϵ/ϵ_0 в NaNbO₃ постепенно размывается с формированием платообразных участков в максимуме ϵ/ϵ_0 .

Рисунок 4 – Зависимости от температуры относительной диэлектрической проницаемости твердых растворов системы (1-х) NaNbO₃– x/2CuNb₂O₆ на разных частотах *f* переменного измерительного электрического поля

Само пиковое значение $\varepsilon/\varepsilon_0$ резко увеличивается по мере насыщения системы Сu- содержащим компонентом. Дисперсия $\varepsilon/\varepsilon_0$ выше T_{κ} , характерная и для чистого NaNbO₃, сохраняется и усиливается в TP. При этом в NaNbO₃ в интервале частот ($25 \div 2 \cdot 10^6$) Гц после небольшого спада после $T_{\kappa} \varepsilon/\varepsilon_0$ стремительно растет, начиная с температур T_i тем больших, чем выше частота f электрического измерительного поля, а в области более высоких частот эффект повышения $\varepsilon/\varepsilon_0$ вообще отсутствует. В TP возрастание $\varepsilon/\varepsilon_0$ в высокотемпературной области после T_{κ} (снижающейся при увеличении содержания CuNb₂O₆), начинается после T_{κ} с с 0.05 – частотно независим, а при x > 0.05 (см., например, рисунок 4 с x = 0.0625) – зависит от частоты, сдвигаясь в сторону более высоких температур по мере увеличения f. В низко- и высокотемпературных областях существенна дисперсия $\varepsilon/\varepsilon_0$.

Принципиально не отличаясь от диэлектрических спектров TP из технического сырья, зависимости $\varepsilon/\varepsilon_0(T)/f$ TP из «Осч» – более четкие с меньшей дисперсией слева и справа от T_к. Наблюдаемые эффекты низкочастотной дисперсии диэлектрической проницаемости исследуемых TP характерны для веществ, в которых зависимость $\varepsilon/\varepsilon_0$ от частоты не связана (или почти не связана) с ориентационной поляризацией, а вызвана влиянием электропроводности на $\varepsilon/\varepsilon_0$ и tgδ, обусловленной наличием примесей или дефектов.

На рисунке 5 показаны зависимости относительной диэлектрической проницаемости є/є₀ и тангенса угла диэлектрических потерь tgδ от температуры ($f = 500 \text{ к}\Gamma$ ц) неполяризованных образцов ТР изучаемой системы, приготовленных из Nb₂O₅ различных квалификаций в режиме нагреваохлаждения. Хорошо видны различия представленных кривых: более низкие, размытые максимумы ε/ε₀ и больший температурный гистерезис ниже T_к в TP из технического сырья, что, безусловно, связано с дефектной ситуацией в этих объектах. Обращает на себя внимание факт формирования сильного температурного гистерезиса в параэлектрической области ТР с большим содержанием ниобата меди. Причиной этого может быть крайняя неоднородность микроструктуры таких керамик, приводящая к образованию механических напряжений и освобождению от них при последовательных циклах нагрева-охлаждения образцов; появлению внутренних электрических полей дефектов на границах неоднородностей; экранированию свободными носителями зарядов СЭ. Кроме того, несомненное влияние на температурный гистерезис оказывает повышенная электропроводность керамик: появляющиеся при этом свободные носители зарядов экранируют домены, препятствуя их переориентациям.

В таблице 1 приведены диэлектрические, пьезоэлектрические и упругие характеристики изученных ТР. Изученные керамики обладают высокой механической добротностью при сохранении достаточных пьезоэлектрических коэффициентов и характерной для ТР на основе ниобатов щелочных металлов высокой скоростью звука (таблица 1).

Рисунок 5 – Зависимости относительной диэлектрической проницаемости ε/ε₀ и тангенса угла диэлектрических потерь tgδ (*f*=500 кГц) твердых растворов системы (1-х) NaNbO₃– x/2CuNb₂O₆

Таблица 1 — Электрофизические характеристики TP системы (1-х) NaNbO₃-х/2CuNb₂O₆

x	$\epsilon_{33}^{T}/\epsilon_{0}$		d ₃₃ , пКл/Н		Kp		Q _M		V ^E _{1,} км/с	
	«Осч»	«Нбо-	«Осч»	«Нбо-	«Осч»	«Нбо-	«Осч»	«Нбо-	«Осч»	«Нбо-
		Пт»		Пт»		Пт»		Пт»		Пт»
0.0000	194	118	28	19	0.180	0.15	391	842	3.63	3.69
0.0500	488	340	30	12	0.075	0.07	539	1355	5.28	5.30
0.0625	222	237	25	17	0.065	0.08	593	590	5.27	5.28
0.0750	407	346	14	14	0.070	0.06	676	1085	5.23	5.30

В четвертой главе описаны эффекты модифицирования ТР на основе системы (Na_{1-x}Li_x)NbO₃ различными оксидами. Модифицирование проводили в соответствие со схемой, представленной на рисунке 6.

При этом в качестве добавок использовали простые оксиды (NiO, MnO₂, CuO, SnO₂), комбинации их (CuO+MnO₂), либо других оксидов (Bi_2O_3 +Fe₂O₃), вводимых в количестве (1 ÷ 3) масс. %. Рентгенофазовым ана-

лизом установлена практическая беспримерность (< 5 %) всех полученных образцов, за исключением TP, модифицированных SnO_2 , в которых суммарное содержание примесей превышало 20 % (в дальнейшем эти TP не аттестовались электрофизическими методами).

Рисунок 6 – Схема сверхстехиометрического модифицирования ТР основе системы (Na_{1-x}Li_x)NbO₃

Рисунок 7 – Фазовые диаграммы ТР на основе системы (Na_{1-x}Li_x)NbO₃, модифицированных различными оксидами

Все полученные керамики характеризуются достаточно высокими значениями плотности ($\rho_{\text{отн.}} > 90$ %), что способствует реализации в них максимально возможных для данной технологии электрофизических параметров. На рисунке 7 приведены фазовые диаграммы модифицированных ТР. Исходный состав имеет структуру перовскита и представляет собой смесь ромбической (P) с моноклинной (M₂) подъячейкой и ромбоэдрической (P₃₂) фаз (индексы у обозначения фаз показывают мультипликацию осей перовскитной ячейки, в М фазе – оси b). В случае с MnO₂, CuO, CuO+MnO₂ структура при всех концентрациях модификаторов сохраняет исходную смешанную симметрию. Более сложная последовательность фаз наблюдается с NiO и Bi₂O₃+Fe₂O₃, что связано с кристаллохимическими особенностями вводимых элементов (повышенной стереохимической активностью и эмиссионной способностью Ni (II), легкостью изменения степени окисления железа, зачастую присутствующего в объектах в виде Fe (II), Fe (III), Fe (IV).

На рисунке 8 a-з) представлены изображения поверхностей сколов и пор керамик, модифицированных 1 масс. % и 2 масс. % CuO и MnO₂ соответственно, во вторичных электронах в растровом электронном микроскопе и распределение модификаторов на сколе TP (рисунок 8 u, κ).

Анализ рисунка 8 показывает, что микроструктура образцов относительно однородна с плотной упаковкой близких к кубической форме зерен, размер которых и толщина межкристаллитных границ увеличиваются по мере возрастания концентрации модификаторов. Следы подплавления в случае с Си говорят в пользу присутствии жидких фаз, цементирующих зерна. Скол по зерну, характерный для всех модификаторов, также свидетельствуют об их присутствии. При анализе элементного состава зерен во всех случаях, кроме Bi₂O₃+Fe₂O₃, установлена преимущественная локализация модификаторов либо в порах (Cu), либо в межкристаллитных прослойках (Mn, Ni), что говорит лишь о частичном встраивании этих элементов в базовую структуру. При комбинированном модифицировании $Bi_2O_3 + Fe_2O_3$ соединения Bi_3^{3+} , образуя жидкие фазы, равномерно распределяются по межзёренным пространствам, а более тугоплавкие оксиды железа образуют изолированные вкрапления отдельных фаз, близких по составу к Fe₂O₃.

Рисунок 8 – Изображения поверхностей сколов (а, в, д, ж) и пор (б, г, е, з) ТР, модифицированных 1 масс. % (*a*, б), 2 масс. % (*в*, г) СиО и 1 масс. % (д, е), 2 масс. % (ж, з) MnO₂. Распределения 1 масс.% Cu (u) и 1 масс. % Mn (к) на сколах ТР полученные во вторичных электронах

к

На рисунке 9 показаны зависимости электрофизических характеристик модифицированных ТР от концентрации вводимых добавок. Показано, что при модифицировании определяющими факторами в формировании электрофизических свойств ТР являются подвижность доменных стенок, определяемая спонтанной деформацией и взаимодействием с образующимися вакансиями, а также кристаллохимические особенности вводимых элементов.

Рисунок 9 – Зависимости электрофизических характеристик ТР на основе системы (Na_{1-x}Li_x)NbO₃, модифицированных NiO (1), MnO₂(2), CuO (3), CuO+MnO₂(4), Bi₂O₃+Fe₂O₃(5) от концентраций модификаторов (комнатная температура)

На рисунке 10 представлены зависимости $\varepsilon/\varepsilon_0$ от температуры TP системы (Na_{1-x}Li_x)NbO₃ (x=0.125). Характерная для сегнетоэлектриков зависимость относительной диэлектрической проницаемости ($\varepsilon/\varepsilon_0$) от температуры с ярко выраженным чётким максимумом при температуре Кюри Т_к имеет ряд особенностей. В интервале частот 25 Гц - 1 кГц после резкого спада выше T_к є/є₀ стремительно растёт, начиная с температур T_i тем больших, чем выше частота f электрического измерительного поля, при этом зависимость T_i(lgf) практически линейна (рисунок 10, врезка), а в области более высоких частот эффект повышения $\varepsilon/\varepsilon_0$ отсутствует. В том же частотном диапазоне в преддверии фазового перехода (ФП) на зависимостях tgb(T) наблюдается максимум, постепенно "размывающийся" с ростом f, и вне указанного интервала частот зависимость tg $\delta(T)$ становится линейной. Ниже, выше и при $T_{\kappa} \epsilon/\epsilon_0$ и tgó заметно уменьшаются с ростом частоты, и это изменение усиливается при повышении температуры, а при высоких температурах оно наиболее заметно при низких f (25 Гц - 1 кГц). Пиковые значения (є/є₀)_{тах} и tgδ_{тах} (при 300 °C) уменьшаются обратно пропорционально lgf, при этом зависимость (є/є₀)_{max} (lgf) распадается на два линейных участка с разной скоростью изменения диэлектрических потерь (при низких f (до 1 кГц) на порядок больших, чем при более высоких частотах (рисунок 10, врезка).

С возрастанием $f T_{\kappa}$ немного сдвигается в сторону низких температур ($\Delta T_{\kappa} = T_{\kappa_2 \Gamma_{\mu}} - T_{\kappa_1 \Gamma_{\mu}} = 20^{\circ}C$) (рисунок 10).

Наблюдаемое является следствием влияния электропроводности. На рисунке 11 показаны термочастотные зависимости є/є₀ ТР на основе бинарной системы (Na, Li)NbO₃, модифицированных MnO₂.

Анализ диэлектрических спектров выше T_K выявил ряд отличий от вышеописанного термочастотного поведения ϵ/ϵ_0 в параэлектрической (ПЭ) области.

Рисунок 10 – Зависимости от температуры (ϵ/ϵ_0) ТР Na_{0.875}Li_{0.125}NbO₃. Цифры у кривых – значения частоты в Гц. На врезке показаны зависимости температур перегиба (T_i) и максимума ϵ/ϵ_0 (T_{max}), максимумов (ϵ/ϵ_0)_{max} и (tg\delta)_{max} от логарифма f

Рисунок 11 – Зависимости є/є₀(Т) и tgб (вставки слева) керамических ТР на основе системы (Na_{1-x}Li_x)NbO₃, модифицированных 1 (а) и 2 (б) масс. % MnO₂. На вставке справа показан увеличенный фрагмент спектров

Если ранее наблюдали аномальное изменение $\varepsilon/\varepsilon_0$ в высокотемпературной области вдали от ФП (СЭ – ПЭ) и связывали наблюдаемое с восстановлением пятивалентного ниобия, то теперь первичный рост $\varepsilon/\varepsilon_0$ начинается уже вблизи (практически в момент, особенно при низких f) ФП, вторая аномалия $\varepsilon/\varepsilon_0$ (рисунок 11 а) совпадает с выше описанной и соответствует температурам, при которых изменяется валентность Nb. На некоторых из изученных спектров присутствуют и более высокотемпературные аномалии (рисунок 11 б).

На рисунке 12 представлены зависимости относительной реверсивной диэлектрической проницаемости от напряжённости электрического поля неполяризованных (ϵ/ϵ_0) керамик некоторых изученных составов (с MnO₂(*a*) и CuO(δ), 2 масс %.) Как видно из рисунка 12, эти зависимости имеют форму "бабочки", характерную для классических СЭ. На рисунке 13 показаны, зависимости обратного пьезомодуля d₃₃^{обр} и полуциклов петель электромеханического гистерезиса от амплитуды напряженности Е постоянного электрического поля модифицированных MnO₂ керамик. Видно, что зависимости d₃₃^{обр} (Е) оказались аналогичными наблюдаемым в сегнетожёстких (СЖ) материалах, при этом с увеличением концентрации MnO₂ СЖ увеличивается.

Рисунок 12 – Зависимости относительной реверсивной диэлектрической проницаемости от напряженности постоянного электрического поля неполяризованных керамик на основе системы (Na_{1-x}Li_x)NbO₃, модифицированных MnO₂(*a*), CuO(δ)

В пятой главе показаны возможности повышения термической устойчивости феррита висмута и его диэлектрической стабильности путем введения оксидов 3d-металлов и высокозарядных элементов.

Рисунок 13 – Зависимости обратного пьезомодуля $d_{33}^{oбp}$ и полуциклов петель электромеханического гистерезиса от амплитуды напряженности Е постоянного электрического поля модифицированных MnO₂ керамик (a) – 1масс. % MnO₂; б) – 2 масс. % MnO₂; в) – 3 масс. % MnO₂)

Как известно, BiFeO₃ находится на границе устойчивости структурного типа перовскита как по параметру направленности (v), так и по параметру напряженности (µ) химических связей. Это определяет его термодинамическую нестабильность уже при температурах твердофазного синтеза, суживающую область фазы существования BiFeO₃ и проявляющуюся также в образовании в процессе термообработок довольно заметного количества трудноустранимых «балластных» фаз (Bi₂Fe₄O₉; Bi₂₅FeO₃₉). С целью исключения подобных явлений нами проведено модифицирование BiFeO₃ оксидами 3d– металлов, высокозарядных элементов и др.

На рисунке 14 показаны относительные интенсивности рентгеновских максимумов I/I₁, соответствующих содержанию примесных фаз в материалах на основе BiFeO₃, модифицированных оксидами 3d-металлов (а) и оксидными соединениями высокозарядных ионов и стеклообразующими добавками (б), синтезированных при различных температурах. Видно, что минимального количества примесей удается добиться при использовании оксидов Ni, Ti,

Nb, а в первом случае повышается и плотность керамик. Наблюдаемое связано с высокой стереохимической активностью Ni(II) и образованием прочных электроннонасыщенных связей в TP с Ti(IV), Nb(V), упрочняющих основной кислороднооктаэдрический каркас и стабилизующих структуру.

Рисунок 14 – Зависимости I/I1 от $T_{\mbox{\scriptsize синт}}$ модифицированных TP на основе $BiFeO_3$

На рисунке 15 представлены микрофотографии сколов модифицированных ТР. Существенные отличия микроструктуры BiFeO₃ с Zn (правильная, сильно анизотропная форма кристаллитов) могут быть связаны с направленным ростом зерен вследствие внедрения цинка в тетраэдрические пустоты вдоль плоскостей кристаллографического сдвига, что возможно из-за склонности Zn иметь тэтраэдрическую координацию.

Рисунок 15 – Микрофотографии сколов модифицированных керамик на основе феррита висмута (а – MnO_2 ; б – TiO_2 ; в – Nb_2O_5 ; г – NiO; д – CoO; е – ZnO). Маркер-30 мкм

Из рис. 16 видно, что на всех зависимостях $\varepsilon/\varepsilon_0(T)$, за исключением полученных для образцов с Ті, в области, прилежащей к ~100 °С (при нагреве и охлаждении), присутствуют аномалии $\varepsilon/\varepsilon_0$ (локальные максимумы, минимумы, точки перегиба), которые сопровождаются увеличением ее дисперсии.

Рисунок 16 – Диэлектрические спектры модифицированных керамик на основе феррита висмута (а – без M; б – MnO_2 ; в – TiO_2 ; г – Nb_2O_5 ;д – NiO; е – CoO; ж – ZnO)

В материалах с TiO_2 явление диэлектрической нестабильности выражено значительно слабее. Для установления причин наблюдаемого проведены детальные высокотемпературные рентгеновские исследования некоторых TP (рисунок 17).

Рисунок 17 – Температурные зависимости угла α однородного параметра деформации δ и объема V ромбоэдрической ячейки BiFeO₃ (*a*), модифициро– ванного TiO₂ (*b*), NiO (*b*) и ZnO (г). Пунктирными линиями выделены области

постоянства объема (ИЭ)

Вблизи 100 °С во всех случаях наблюдается инварный эффект (ИЭ), свидетельствующий о некой структурной неустойчивости. При этом в случае с TiO₂ интервал ИЭ, одинаковый на прямом и обратном ходах, совпадает с аналогичным в BiFeO₃, формирующимся при охлаждении образцов. Все это свидетельствует о привнесении дополнительных дефектов в BiFeO₃ при модифицировании этими элементами, что связано лишь с частичным вхождением их в базовую решетку. Ti⁴⁺, обладающий близкими к Fe³⁺ радиусом и зарядом, скорее всего, полностью встраивается в решетку «хозяина», что приводит к снижению дефектности структуры и, как следствие, дисперсии $\varepsilon/\varepsilon_0$, которая, как известно, является индикатором такой метастабильности объектов.

ЗАКЛЮЧЕНИЕ

На основании проведенных исследований можно сформулировать основные результаты и выводы:

1. Изучено влияние условий фазообразования на процессы формирования кристаллической структуры, микроструктура, макросвойств объектов, установлены корреляционные связи состав-структура-свойства и показано, что в системе (1-x)NaNbO₃-x/2CuNb₂O₆ ($0.050 \le x \le 0.1625$) ($\Delta x = 0.0125$):

– синтез ТР представляет собой сложный многостадийный процесс, характеризующийся конкурентным встраиванием Cu²⁺ в А-подрешетку исходного ниобата, а спекание осуществляется при непосредственном влиянии Cu-содержащих жидких фаз;

 при использовании особочистого Nb₂O₅ имеет место фазовый переход из P-фазы (перовскитная ячейка моноклинная с удвоенным параметром b) в T-фазу через сложную морфотропную область;

 низкочастотная дисперсия є/є₀ вызвана влиянием электропроводности, обусловленной наличием примесей или дефектов;

– возможно достижение в некоторых твердых растворах экстремально высоких значений Q_m при сохранении достаточной пьезоактивности за счет торможения доменных переориентаций из-за образования участков с двойными межкристаллитными прослойками.

2. Определены пути направленного изменения физических свойств рассматриваемых твердых растворов вариаций условий их фазообразования, в том числе, путем модифицирования, при этом разработана и экспериментально реализована схема модифицирования поликристаллических твердых растворов на основе системы (Na_{1-x}Li_x)NbO₃ включающая различные способы модифицирования простыми оксидами (CuO, NiO, MnO₂, SnO₂), комбинациями их (CuO + MnO₂) и других элементов (Bi₂O₃+Fe₂O₃), в модифицированных объектах:

– рентгенографически установлена практически полная беспримесность полученных образцов, за исключением твердых растворов, модифицированных SnO₂, в которых содержание примесей превышало ~ 20 мол. %, впоследствии эти растворы не исследовались;

– сделано заключение о том, что катионы Mn^{4+} и Cu^{2+} , Ni^{2+} лишь частично встраиваются в структуру типа перовскита, а преимущественно располагаются: Mn^{4+} – в межкристаллитных прослойках, Cu^{2+} и Ni^{2+} – в порах. При комбинированном модифицировании Bi_2O_3 + Fe₂O₃ соединения Bi^{3+} , образуя жидкие фазы, равномерно распределяются по межзёренным пространствам, а более тугоплавкие оксиды железа образуют изолированные вкрапления отдельных фаз, близких по составу к Fe₂O₃;

– установлены следующие последовательности фазовых состояний при сверхстехиометрическом введении NiO – $P(M_2)+P_{3_2} \rightarrow P_{3_2} \rightarrow P_{3_2}+M$; MnO₂+CuO – $P(M_2)+P_{3_2} \rightarrow P(M_2)$; Bi₂O₃ + Fe₂O₃ – $P(M_2)+P_{3_2} \rightarrow P_{3_2}+M$; стехиометрическом модифицировании Mn⁴⁺ – $P(M_2)+P_{3_2} \rightarrow P(M_2) \rightarrow \Pi CK$. При сверхстехиометрическом легировании MnO₂ и CuO во всём исследуемом интервале концентраций фазовый состав соответствует морфотропной области $P(M_2)+P_{3_2}$;

– показано, что рост Q_m и g_{33} , а также снижение $\epsilon_{33}{}^{\rm \scriptscriptstyle T}\!/\epsilon_0$, tgб и электропроводности в модифицированных керамиках обусловлены частичным встраиванием катионов-модификаторов Cu^{2+} , Ni^{2+} в A-, а Mn^{4+} – в В-подрешётку структуры перовскита с образованием анионноизбыточных и анионнодефицитных TP повышенной сегнетожёсткости. Увеличение пьезоанизотропии в модифицированных TP связано с формированием текстур межкристаллитных прослоек, тормозящих движение их границ вдоль определённых направлений.

3. Установлена возможность применения к исследуемым веществам некоторых общих представлений о взаимной связи состав – структура – свойства и природе аномальных явлений в областях концентрационных и полиморфных превращений и выявить специфику макрооткликов в исследуемых системах, связанную с особенностями их физико-химического состояния.

Определены оптимальные физико-химические условия образования керамик феррита висмута, сверстехиометрически модифицированного оксидами Cr, Mn, Co, Ni, Cu, Zn, Ti, Nb и карбонатом Li. При этом показано, что:

– модифицирование BiFeO₃ соседними с железом по таблице Менделеева d-элементами (Mn, Co, Ni) а также высокозарядными (Nb, Ti) приводит к повышению его термической устойчивости, позволяющей снизить содержание примесей в продуктах синтеза и, как следствие, осуществить спекание при более высоких температурах, обеспечивающих увеличение плотностей керамик; использование стеклообразующих добавок (Li₂CO₃, B₂O₃) и Cr₂O₃ из-за активизации процессов разложения BiFeO₃ не позволяет минимизировать примесный состав;

– при введении в BiFeO₃ как высокозарядных, так и низкозарядных ионов происходит увеличение сегнетожесткости керамик, снижение – ϵ/ϵ_0 , tg\delta, в первом случае, за счет накопления кислорода в междуузлиях, во втором, – реализации вакансионного механизма стабилизации доменных границ;

- аномалии диэлектрических спектров модифицированных ТР на ос-

нове BiFeO₃ вблизи 100^{9} C являются следствием изменений реальной структуры феррита висмута, модифицированного вышеперечисленными элементами, за исключением Ti, практически полное вхождение которого в базовую решётку обеспечивает снижение дефектности и повышение диэлектрической стабильности объектов.

На базе полученных экспериментальных данных сформулированы перспективные основы функциональных материалов, пригодных для использования в электронике; получен патент на разработанный материал для применения в силовых ультразвуковых преобразователях, поданы три заявки на изобретения.

Цитируемая литература

1. Фесенко, Е.Г. Новые пьезокерамические материалы / Е.Г. Фесенко, А.Я. Данцигер, О.Н. Разумовская. – Ростов-на-Дону: Изд-во РГУ, 1983. – 348 с. 2. Яффе, Б. Пьезоэлектрическая керамика / Б. Яффе, У. Кук, Г. Яффе. – М.: Мир, 1974. – 288 с.

3. Смоленский, Г.А. Сегнетомагнетики / Г.А. Смоленский, И.Е. Чупис // Успехи физических наук. – 1982 – С. 137–438.

4. Ахкубеков, А.А. Контактное плавление материалов и наноструктур на их основе / А.А. Ахкубеков, Т.А. Орквасов, В.А. Созаев. – М.: Физматлит, 2008. – 152 с.

Основные результаты диссертации опубликованы в следующих работах:

1. Пат. 2498959 Российской Федерации, МПК С04В/ Резниченко Л.А., Вербенко И.А., Садыков Х.А., Дудкина С.И., Павленко А.В., Андрюшин К.П.; заявитель и патентообладатель Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Южный федеральный университет" (RU). 2011145119; заявл. 09.11.2011, опубл. 20.11.2013, Бюл. 32. – 6 с. (из перечня ВАК)

2. Резниченко, Л.А. "Эко"-дизайн функциональных материалов и метаматериалов в рамках пятого и шестого технологических укладов / Л.А. Резниченко, И.А. Вербенко, **Х.А. Садыков,** М.В. Таланов // Экология промышленного производства. – 2012. – № 3. – С. 1–11 (из перечня ВАК).

3. Садыков, Х.А. Влияние ионов переходных 3d-металлов на формирование электрофизических свойств поликристаллических материалов на основе ниобатов щелочных металлов / **Х.А. Садыков**, И.А. Вербенко, Л.А. Шилкина, С.И. Дудкина, А.Г. Абубакаров, Л.А. Резниченко // Известия РАН. Серия физическая. – 2013. – Т. 77. – № 9. – С. 1253–1255 (из перечня ВАК).

4. Садыков, Х.А. Исследование возможностей повышения термической устойчивости мультиферроика BiFeO₃ путём варьирования катионного состава / **Х.А. Садыков**, И.А. Вербенко, Л.А. Резниченко, А.Г. Абубакаров, Л.А. Шилкина, О.Н. Разумовская, С.И. Дудкина // Конструкции из композиционных материалов. – 2013. – № 2. – С. 50–57 (из перечня ВАК).

5. Садыков, Х.А. Особенности синтеза и спекания экологически безопасных материалов с участием ниобатов натрия и меди / Х.А. Садыков, И.А. Вер-

бенко, Л.А. Резниченко, А.Г. Абубакаров, Л.А. Шилкина // Экология промышленного производства. – 2013. – № 2. – С. 44–49 (из перечня ВАК).

6. Садыков, Х.А. Эффекты простого и комбинированного модифицирования ниобатных материалов, не содержащих токсичные элементы / **Х.А. Садыков**, Л.А. Резниченко, И.А. Вербенко, С.И. Шевцова, А.В. Павленко, Л.А. Шилкина // Конструкции из композиционных материалов. – 2013. – № 3. – С. 45–55 (из перечня ВАК).

7. Садыков, Х.А. Особенности диэлектрических спектров ниобатных материалов, модифицированных оксидами марганца и меди / Х.А. Садыков, И.А. Вербенко, Л.А. Резниченко, Л.А. Шилкина, А.Г. Абубакаров // Известия РАН. Серия физическая. – 2013. – Т. 77. – № 9. – С. 1281–1282 (из перечня ВАК). 8. Садыков, Х.А. Фазы, микроструктура, диэлектрические и пьезоэлектрические свойства твердых растворов системы NaNbO₃ – CuNb₂O₆, приготовленных из Nb₂O₅ различных квалификаций / Х.А. Садыков, Л.А. Резниченко, Л.А. Шилкина, И.А. Вербенко, С.И. Дудкина, Г.М. Константинов, Е.Ю. Гаврилова // Труды II Международного молодежного симпозиума «Физика бессвинцовых пьезоактивных материалов. (Анализ современного состояния и перспективы развития)» («LFPM–2013»), г. Ростов-на-Дону – г. Б. Сочи. – 2013. – С. 164–183.

9. Садыков, Х.А. Высокотемпературные исследования экологически чистых сегнетомагнитных материалов на основе феррита висмута / Х.А. Садыков, Л.А. Шилкина, И.А. Вербенко, Л.А. Резниченко // Сб-к докл. IV Международного экологического конгресса и Инновационного форума молодых ученых «YOUNG ELPIT» (VI международная научно-техническая конференция, III международный российско-итальянский семинар «Новое в инженерной экологии и безопасности») «Экология и безопасность жизнедеятельности промышленно-транспортных комплексов», г. Тольятти. – 2013. – С. 228–233. 10. Садыков, Х.А. Получение, структура, микроструктура и диэлектрические спектры феррита висмута, модифицированного оксидными соединениями d-элементов / Х.А. Садыков, Л.А. Резниченко, И.А. Вербенко, Л.А. Шилкина, С.И. Дудкина, К.П. Андрюшин, С.А. Симоненко, Г.М. Константинов // Труды II Международного молодежного симпозиума «Физика бессвинцовых пьезо-активных материалов. (Анализ современного состояния и перспективы развития)» («LFPM–2013»), г. Ростов-на-Дону – г. Б. Сочи. 2013. – С. 184–195.